Home Store Multiple Booleans Using Single Variable
Post
Cancel

Store Multiple Booleans Using Single Variable

Intro

Inspired by a stackoverflow answer which is more than a decade old. StackOverflow-Answer1, StackOverflow - Answer2

@Jon Skeet there provide a way of measuring how much memory do byte, int and boolean variables takes.

To simply clarify my point here, I modified some of his code in order to reproduce the situation.

He pointed out that the actual size of those variables was VM-dependent, and his VM was Sun's JDK build 1.6.0_11.

My testcase VM is AdoptOpenJDK (build 11.0.10+9) - hotspot VM.

Also, in this Oracle Java Documentation about Primitive Data Types.

boolean: The boolean data type has only two possible values: true and false. Use this data type for simple flags that track true/false conditions. This data type represents one bit of information, but its “size” isn’t something that’s precisely defined.

Reproduce Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
    class LotsOfBytes {
        byte a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, aa, ab, ac, ad, ae, af;
        byte b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf;
        byte c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, ca, cb, cc, cd, ce, cf;
        byte d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, da, db, dc, dd, de, df;
        byte e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, ea, eb, ec, ed, ee, ef;
    }

    class LotsOfInts {
        int a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, aa, ab, ac, ad, ae, af;
        int b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf;
        int c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, ca, cb, cc, cd, ce, cf;
        int d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, da, db, dc, dd, de, df;
        int e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, ea, eb, ec, ed, ee, ef;
    }

    class LotsOfBooleans {
        boolean a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, aa, ab, ac, ad, ae, af;
        boolean b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf;
        boolean c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, ca, cb, cc, cd, ce, cf;
        boolean d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, da, db, dc, dd, de, df;
        boolean e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, ea, eb, ec, ed, ee, ef;
    }

each of LotsOfXXX has 80 variables.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
private static final int SIZE = 1000000;

    @Test
    void test() {
        LotsOfBytes[] first = new LotsOfBytes[SIZE];
        LotsOfInts[] second = new LotsOfInts[SIZE];
        LotsOfBooleans[] third = new LotsOfBooleans[SIZE];

        System.gc();
        long startMem = getMemory();

        for (int i = 0; i < SIZE; i++) {
            first[i] = new LotsOfBytes();
        }

        System.gc();
        long endMem = getMemory();

        System.out.println("Size for LotsOfBytes: " + (endMem - startMem));
        System.out.println("Average size: " + ((endMem - startMem) / ((double) SIZE)));
        System.out.println("Appro. size for each Byte: " + ((endMem - startMem) / ((double) SIZE)) / 80);
        System.out.println();

        System.gc();
        startMem = getMemory();
        for (int i = 0; i < SIZE; i++) {
            second[i] = new LotsOfInts();
        }
        System.gc();
        endMem = getMemory();

        System.out.println("Size for LotsOfInts: " + (endMem - startMem));
        System.out.println("Average size: " + ((endMem - startMem) / ((double) SIZE)));
        System.out.println("Appro. size for each Int: " + ((endMem - startMem) / ((double) SIZE)) / 80);
        System.out.println();


        System.gc();
        startMem = getMemory();

        for (int i = 0; i < SIZE; i++) {
            third[i] = new LotsOfBooleans();
        }

        System.gc();
        endMem = getMemory();

        System.out.println("Size for LotsOfBooleans: " + (endMem - startMem));
        System.out.println("Average size: " + ((endMem - startMem) / ((double) SIZE)));
        System.out.println("Appro. size for each Boolean: " + ((endMem - startMem) / ((double) SIZE)) / 80);
        System.out.println();


        // Make sure nothing gets collected
        long total = 0;
        for (int i = 0; i < SIZE; i++) {
            total += first[i].a0 + second[i].a0 + ((!third[i].a0) ? 0 : 1);
        }
        System.out.println(total);
    }

    private static long getMemory() {
        Runtime runtime = Runtime.getRuntime();
        return runtime.totalMemory() - runtime.freeMemory();
    }

Result

1
2
3
4
5
6
7
8
9
10
11
Size for LotsOfBytes: 95671792
Average size: 95.671792
Appro. size for each Byte: 1.1958974

Size for LotsOfInts: 336440976
Average size: 336.440976
Appro. size for each Int: 4.205512199999999

Size for LotsOfBooleans: 95999768
Average size: 95.999768
Appro. size for each Boolean: 1.1999971

Note that Appro. size for each XXX is not precisely the actual size of each XXX. There was memory reserved for class/obj definition or other kind of stuff.

As it generates, byte and boolean , each of them, takes 1 Byte memory. int takes 4 Byte each.

What if you can store 8 boolean inside a single byte. In that way, 1 boolean takes nearly 1 bit.

Method

How this works?

Suppose that you need to store a boolean array just like

1
boolean[] someFlags = new boolean[8];

you will have a array of 8 boolean, all in false state, which is

1
[false, false, false, false, false, false, false, false]

Given the situation discussed above, 8 Byte here taken.

What if you can using a byte ‘s bit to represent them.

1
2
127(dec) -> 0111 1111 (binary)
  0(dec) -> 0000 0000 (binary)

Each bit holds a positional boolean status inside one Byte.

Here is an example:

1
2
3
4
5
[false, false, true, false, false, false, true, true]
           boolean[] <=> binary
[  0  ,  0  ,   1 ,   0  ,   0  ,   0  ,   1 ,   1 ]
              binary <=> dec
35(dec)

Set positional boolean flag to true

byte flags = 0;

1
2
3
flags |= 1 << position;
// which is equivalent to 
// flag = flag | 1 << position

Take a deep look in how that works.

  • Suppose we need to someFlags[2] = true

    1
    2
    3
    
    flags = 0000 0000 | (1 << 2);
    flags = 0000 0000 | 0000 0100;
    flags = 0000 0100;
    

    ```

  • ThensomeFlags[4] = true:

    1
    2
    3
    
    flags = 0000 0100 | (1 << 4);
    flags = 0000 0100 | 0001 0000;
    flags = 0001 0100;
    

    as long as the position arg not exceeding 7, flags will be well preserved in this variable.

Set positional boolean flag to false

flags will remain untouched.(0001 0100)

Additional info: ~operator is Complement Operator. Flipping bits in binary will do the work.

1
2
3
flags &= ~(1 << position);
// which is equivalent to 
// flag = flag & ~(1 << position)
  • Suppose we need to toggle someFlags[2] = false

    1
    2
    3
    4
    5
    
    flags = 0001 0100 & ~(1 << 2);
    flags = 0001 0100 & ~(0000 0100);
    // "~" operator => flip bits
    flags = 0001 0100 &   1111 1011;
    flags = 0001 0000;
    

    Now the someFlags[2] is set to false;

Retrieve flag

flags will remain untouched.(0001 0000)

1
return (flags & (1 << position)) == (1 << position);
  • Suppose we need to check whether someFlags[4] == true

    1
    2
    3
    4
    
    return (0001 0000 & (1 << 4)) == (1 << 4);
    return (0001 0000 & 0001 0000) == 0001 0000;
    return  0001 0000 == 0001 0000;
    return true;
    

Furthermore

int, which consists of 4 Byte(32 bit), is totally viable theoretically, and it can hold 32 boolean variables, but consumes memory just as 4 boolean do.

In modern computer we may not need this kind of twisted way to saving memory. Just consider it a way of leetcode technique. However, working on some embedded devices with little tiny memory size available, you may find it useful.

Keyword

  • Leetcode save memory
  • memory saving tweaks
  • multiple booleans in 1 variable
This post is licensed under CC BY 4.0 by the author.